Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Tunable intrinsic strong light–matter coupling in transition metal dichalcogenide nanoresonators

Not Accessible

Your library or personal account may give you access

Abstract

Self-hybridizing structures based on transition metal dichalcogenides (TMDCs) are becoming promising candidates for the study of an intrinsic strong light–matter coupling because of the efficient mode overlap with much simplified geometries. However, realizing flexible tuning of intrinsic strong coupling in such TMDC-based structures is still challenging. Here, we propose a strategy for flexible tuning of the intrinsic strong light–matter coupling based on a bulk TMDC material. We report the first demonstration of the strong coupling of intrinsic excitons to whispering gallery modes (WGMs) supported by an all-TMDC nanocavity. Importantly, by simply controlling angles of incidence, a selective excitation of WGMs and an anapole can be realized, which enables a direct modulation of self-hybridized interactions from a bright WGM–exciton coupling to a dark anapole–exciton coupling. Our work is expected to provide unique opportunities for engineering a strong light–matter coupling and to open exciting avenues for highly integrated novel nanophotonic devices.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Strong light–matter interactions of exciton in bulk WS2 and a toroidal dipole resonance

Shaojun You, Ying Zhang, Menghui Fan, Shengyun Luo, and Chaobiao Zhou
Opt. Lett. 48(6) 1530-1533 (2023)

Nanophotonics with 2D transition metal dichalcogenides [Invited]

Alex Krasnok, Sergey Lepeshov, and Andrea Alú
Opt. Express 26(12) 15972-15994 (2018)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.